

Magnetics and Microhydrodynamics, from guided transport to delivery

ESR 7 Structure and magnetism of concentrated ionic solutions

Research project	Diffusion in liquids is usually treated in the dilute limit in terms of uncorrelated
	random thermal motion of dissolved ions, directed by a concentration gradient
	The concentration limit, where motions of ions are highly-correlated, is much
	more interesting, and the distinction between diffusion and advection is blurred.
	appears that ions in concentrated solutions move in highly-correlated groups of
	10 ³ -10 ³ [1]. The response of concentrated aqueous solutions of paramagnetic
	ions to a magnetic field gradient will provide important insight into these
	correlations; a drop of paramagnetic solution in water can be easily manipulat
	by a magnet, although the magnetic field gradient forces on single isolated ions
	duramic structure and correlations in ionic solutions, and the resulting
	magnetophoresis will be investigated by studies of 3d and Af ions, coupled with
	synchrotron studies of dynamic structural correlation, and small-angle neutror
	scattering (LLB), complemented by molecular dynamics simulations (MPG).
	Results will be i) a proof of concept of magnetic separation of rare earth ions
	solution using magnetic field gradients and ii) design of novel magnetic antitut
	[2], filaments of pure water confined by a surrounding paramagnetic solution in
	nonuniform magnetic field.
	[1] O.Y. Gorobets, Y.I. Gorobets and V.P. Rospotniuk, J. Appl. Phys., 118 (2015), 73902.
	[2] J.M.D. Coey et al., Proc. Natl. Acad. Sci., 106 (2009), 8811.
Supervisor	Name: Michael Coey
	e-mail: jcoey@tcd.ie
	website: https://www.tcd.ie/Physics/research/groups/magnetism/
Host Institution	Trinity College Dublin
	School of Physics Magnetism and Spin Electronics Group
	Trinity College Dublin 2 Ireland
	https://www.tcd.ie/Physics/
Required profile	The candidate should hold a good honours or master's degree in Physics or
Required prome	Chemistry with a strong background in magnetism condensed matter or
	physical chemistry. They should have a passion for interdisciplinary research
	Stave are planned at the Institut Leon Brillouin (LLP Paris) and the
	May Dianaly Institute (MDI Cottingen) as well as advanced ID training The
	Max-Planck Institute (MPI Gottingen), as well as advanced IP training The
	candidate should not have lived in Ireland in the past 12 months.