

Magnetics and Microhydrodynamics, from guided transport to delivery

ESR 4 Imaging locally driven flows

Research project	Flexible magnetic filaments self-propel under the action of AC magnetic fields.
	They have many possible applications in microfluidics ¹ , for example, as mixers.
	Efficiency of their action is determined by the flow of the surrounding fluid.
	Our goal is to measure flow fields around magnetic filaments driven by
	different magnetic-field configurations using a micro Partice Image
	Velocimetry system that is available in our lab. Our previous experience is
	connected with the registration of the micro-flows around fingers initiated by
	magnetic micro-convection ² . These measurements will be linked to
	corresponding numerical simulations of the flow fields around magnetic
	swimmers and will help to formulate the requirements for efficient self-
	propulsion of magnetic filaments and mixing, and build the knowledge base
	for developing applications based on controlled micro-object motility or
	induced flows in microfluidic conditions.
	¹ A. Cebers and K. Erglis, <i>Adv. Funct. Mater.</i> , 26 (2016), 3783–95.
	² K. Erglis et al., <i>J. Fluid Mech.</i> , 714 (2013), 612–33.
Supervisor	Name: Andrejs Cē bers
	e-mail: andrejs.cebers@lu.lv
	website: <u>http://mmml.lu.lv/</u>
Co-supervisor	Name: Guntars Kitenbergs
	e-mail: guntars.kitenbergs@lu.lv
	website: <u>https://sites.google.com/site/gkitenbergs/</u>
Host Institution	University of Latvia
	LATVIJAS Magnētisku Mīkstu
	UNIVERSITATE Materialu ANNO 1919 Laboratorija
	UNIVERSITY OF LATVIA LAB OF MAGNETIC SOFT MATERIALS
	Department of Physics
	Zellu street 25-059. Riga, LV-1002. Latvia
	http://mml.lu.lv/
Required profile	The candidate should hold a Master degree in Physics or similar disciplines.
	Background in soft matter and microfluidics will be considered an advantage.
	Interest for interdisciplinary research is important. Research stays are planned
	at the Max Plank Institute for Dynamics and Self-Organization (Germany) and
	Trinity College Dublin (Ireland). The candidate should not have stayed in
	Latvia in the past 12 months.