

Magnetics and Microhydrodynamics, from guided transport to delivery

ESR 15 Magnetically enhanced PCR on chip

Research project	The polymerase chain reaction (PCR) has rapidly established itself as the "gold
	standard" for microbiology assays thanks to its specificity and sensitivity. However, this
	reaction is still mainly performed with expensive and cumbersome benchtop systems
	that limit the speed of the assay due to the technical limitations of fast thermal cycling
	required to trigger the reaction. There are several reports that demonstrate the
	advantages of microfluidic PCR over standard systems ¹ . Furthermore, nanoparticles
	have been shown to enhance microfluidic PCR performance through enhanced thermal
	conductivity and convective heat transfer compared to the base fluid ² . We propose to
	investigate how ferrofluids (in collaboration with UNISTRA), which experience fast
	and localized heating when exposed to magnetic fields (magnetic hyperthermia ³), can
	yield significant increases in the local heat transfer coefficient using magnetic fields and
	field gradients on magnetite nanoparticle-containing fluids ⁴ . The ESR project will be to
	implement this technology in a microfluidic system exploiting Elvesys' know-how on
	lab on chips for fast real time quantitative PCR (qPCR) ⁵ , complemented by the network
	expertise in flow modelling (MPG).
	References
	[1] E.A. Ottesen et al., Science, 314 (2006), 1464–67.
	[2] S. Kakaç and A. Pramuanjaroenkij, Int. J. Heat Mass Transf., 52 (2009), 3187–96.
	[3] R.E. Rosensweig, Ferrohydrodynamics (Mineola, New York, 2014).
	[4] R. Azizian et al., Int. J. Heat Mass Transf., 68 (2014), 94–109.
Supervisor	Name: Walter Minnella
	e-mail: walter.minnella@elvesys.com
	website: http://www.elveflow.com/
Host Institution	Elvesys Innovation Unit
	Innovation Center
	Elvesys Microfluidic Innovation Center
	83 Avenue Philippe Auguste
	75011 Paris (FRANCE)
Required profile	The candidate should hold a MS degree equivalent in Physics, Engineering or
	Biotechnology. Entrepreneurial mindset is an asset. Excellent command of
	English (both writing and oral) is mandatory. Interest for interdisciplinary
	research is important. PhD enrollment is foreseen at UNISTRA Research
	stays are planned at the UNISTRA (FRANCE) and MPG (GERMANV) The
	andidate should not have staved in France in the past 12 months
	cancidate should not have stayed in France in the past 12 months.